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Abstract. Generating long-range skeleton-based human actions has been
a challenging problem since small deviations of one frame can cause a
malformed action sequence. Most existing methods borrow ideas from
video generation, which naively treat skeleton nodes/joints as pixels of
images without considering the rich inter-frame and intra-frame structure
information, leading to potential distorted actions. Graph convolutional
networks (GCNs) is a promising way to leverage structure information
to learn structure representations. However, directly adopting GCNs to
tackle such continuous action sequences both in spatial and temporal
spaces is challenging as the action graph could be huge. To overcome
this issue, we propose a variant of GCNs (SA-GCNs) to leverage the
powerful self-attention mechanism to adaptively sparsify a complete ac-
tion graph in the temporal space. Our method could dynamically attend
to important past frames and construct a sparse graph to apply in the
GCN framework, well-capturing the structure information in action se-
quences. Extensive experimental results demonstrate the superiority of
our method on two standard human action datasets compared with ex-
isting methods.

Keywords: action generation, graph convolutional network, self-attention,
generative adversarial networks (GAN)

1 Introduction

Recent years have witnessed the development of skeleton-based action genera-
tion, which has been applied in a variety of applications, such as action classi-
fication [10, 17, 19, 29, 44], action prediction [2, 24, 39] and human-centric video
generation [37, 45]. Action generation is still a challenging problem since small
deviations in one frame can cause confusion in the entire sequence.

One of the most successful methods for skeleton-based action generation con-
siders skeleton-based action generation as a standard video generation problem
[7, 13, 40]. Specifically, the method naively treats skeleton joints as image pixels
and sequential actions as videos, without considering the rich structure infor-
mation among both joints and action frames. The video-generation based meth-
ods may produce distorted actions when applied to skeleton generation, if prior
structure knowledge is not well leveraged. A first step to consider structure in-
formation into action generation is to represent a skeleton as a graph structure
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Fig. 1: Comparisons of the construction of action graphs with our proposed method
(3rd tow) and two standard methods (1st and 2nd rows) to encode temporal infor-
mation. First row (full connection): the left-hand joint gather information from all
left-hand joint of past frames; similar to the right-hand joint. Second row (ST-GCN ):
a 1D convolution of kernel size k is used to encode temporal information. Both the
left and right hands could encode information from past k frames with share weights.
Third row (SA-GCN ): both the left- and right-hand joints learn to encode information
from a selected left-hand joints based on the attention scores.

to characterize the spatial relations between joints in each frame based on graph
convolution networks (GCN) [50, 21, 6]. However, most existing GCN methods do
not have the flexibility to process continuous sequential graphs data. This poses
a new challenge: how to construct a representation to effectively incorporate both
temporal and spatial structures into action generation?

Generally speaking, there are two classes of methods with GCN to model
action structure information: (i) Full connection: an entire action sequence is
considered as a graph. Each node of the current frame is connected with the
corresponding nodes in all the past frames. This construction, however, is com-
putationally very inefficient (if ever possible at all). Moreover, the model could
be highly redundant since many frames are similar to each other. (ii) Spatial-
temporal graph convolutional networks [44]: a graph convolution is first applied to
intra-frame skeletons, whose extracted features are then applied with a 1D con-
volution layer to capture temporal information. This method typically requires
weight sharing among all nodes, and the ability to model temporal information
is somewhat weak.

We advocate that a better solution should be proposed to leverage skele-
ton structures and gather information from action sequences more efficiently. In
this paper, we propose Self-Attention based Graph Convolutional Networks (SA-
GCN) to build generic representations for skeleton sequences. Our SA-GCN aims
at building a sparse global graph for each action sequence to achieve both com-
putational efficiency and modelling efficacy. Specifically, for a given frame, the
proposed SA-GCN first calculates self-attention scores for other frames. Based
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on the attention scores, top k past frames with the most significant scores are
selected to be connected to the current frame to construct inter-frame connec-
tions. Within each frame, the joints are connected as the original skeleton rep-
resentation. To demonstrate the differences between our construction and the
aforementioned two constructions, Fig. 1 illustrates a sequence of samples in
terms of every three consecutive frames on the Human 3.6m dataset Sitting-
Down sequence. As illustrated in the figure, our method can be considered as
an adaptive scheme to construct an action graph, with each node assigning a
trainable weight instead of a shared weight as in other methods.

The major contributions of this work are summarized in three aspects:

– We propose SA-GC layer, a generic graph-based formulation to encode struc-
ture information into action modelling efficiently. Our method is the first
sparse and adaptive scheme to encode past frame information for action
generation.

– By efficiently leveraging action structure information, our model can gener-
ate high-quality long-range action sequences with pure Gaussian noise and
provided labels as inputs without pretraining.

– Our model is evaluated on two standard large datasets for skeleton-based
action generation, achieving superior and stable performance compared with
previous models.

2 Preliminaries & Related Work

2.1 Attention Model

Attention models have become increasingly popular in capturing long-term global
dependencies [1, 8]. In particular, self-attention [5, 33, 46] mimics human visual
attention, allowing a model to focus on crucial regions and to learn the correla-
tion among elements in the same sequence. [38] proposes a non-local operation
as a kind of attention on capturing long-range dependencies in videos. [33] de-
velops the transformer model, which is solely based on attention and achieves
state-of-the-art on machine translation. Thus, self-attention can typically lead
to a better representation learning. One key advance of our proposed model
compared with previous ones is that we adopt self attention to efficiently encode
frame-wise correlations by inheriting all merits of the self-attention mechanism.

2.2 Skeleton-Based Action Generation

The task of action generation differs from action prediction [3] in that no past
intermediate sub-sequence is provided. Directly generating human actions from
noise is considered more challenging. The problem has been well studied in early
works [4, 27, 28], which applied switching linear models to generate stochastic
human motions. These models, however, required a large amount of data to fit a
model and are difficult to find an appropriate number of switching states. Later
on, the Restricted Boltzmann Machine [30] and Gaussian-process latent variable
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models [32, 35, 36] were applied. But they still can not scale to massive amounts
of data. The rapid development of deep generative models has brought the idea
of recurrent-neural-network (RNN) based Variational Autoencoder (VAE) [20]
and Generative Adversarial Net (GAN) models [11, 7, 18, 41, 40, 42, 48]. These
models are scalable and usually can generate actions with better quality.

The aforementioned methods still have some limitations, which mainly lie
in two aspects. Firstly, spatial relationships among body joints and temporal
dynamics along continuous frames have not been well explored. Secondly, these
models often require an expensive pre-training phase to capture intra-frame con-
straints, including the two most recent state-of-the-art works [7, 40]. By contrast,
Our work moves beyond these limitations and can be trained from scratch to
generate high-quality motions.

2.3 Graph Convolutional Network

Fig. 2: An illustration of the SA-GC layer.
Ã and Ãs are two adjacency matrices de-
tailed in Section 3.2.

GCNs have been achieving encourag-
ing results [44]. In general, they can
be categorized into two types: spec-
tral approaches [6, 21] and spatial ap-
proaches [50, 26]. The spectral GCN
operates on the Fourier domain (lo-
cality) with convolution to produce
a spectral representation of graphs.
The spatial GCN, by contrast, di-
rectly applies convolution on the spa-
tially distributed nodes. This work
is in the spirit of spatial GCNs and
incorporates new ideas of GCNs to
fit the task. In particular, to model
long-term dependent motion dynam-
ics, we are aware of ideas from graph
pruning [47] and jump connection
[43], which respectively allows one
to extract structure representation
more efficiently and to build deeper
graph convolutional layers. In terms of
GCN-based human motion modelling,
the most related work is ST-GCN [44],
which applies a spatial GCN to a dif-
ferent task of action recognition. This
method applied a GCN layer for intra-
frame skeletons and then used 1D con-
volution layer for gathering information in temporal space. All nodes in a frame
share weights on the temporal space and could only attend limited range of
information, depending on the kernel size of the 1D convolution layer. We will
compare our method with ST-GCN (for action generation) in Section 4.6.
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Fig. 3: The overall framework of the proposed method.

3 Structure-Aware Human-Action Generation

Different from the video-generation task, the skeleton-based action generation
contains huge amounts of structure information, e.g., intra-frame structural
joints information and inter-frame motion dynamics. Directly treating skeleton
frames as images will lose most of these structure information, leading to the
distortion of some skeletal frames. Moreover, in the context of skeleton-based
actions, where only limited positional information is provided, differences be-
tween two continuous frames are virtually impossible to be observed. To address
these issues, we propose to incorporate GCNs to encode the rich structural infor-
mation, with additional consideration to reduce computational burden by using
self-attention to automatically learn a sparse action graph.

3.1 An Overview of the SA-GCN

Fig. 3 illustrates the overall framework of our model for action generation. It
follows the GAN framework of video generation [31, 9], which consists of an
action generator G and a dual discriminator: one video-based discriminator DV

and one frame-based discriminator DF .

Generator For simplicity, we assume the sequence length to be T . Our action
generator starts with a RNN with an input at each time as the concatenation of
a Gaussian random noise z and an embedded class representation of a label y.
The outputs of the RNN layer are denoted as [o0, o1, o2, ..., oT−1]. Following [7,
40], we consider outputting residuals instead of the exact coordinates of different
joints, i.e., c0 = o0, c1 = o1 + c0, ..., cT−1 = oT−1 + cT−2. The output of the
RNN will go through three linear transformations before being fed as the input
of the newly proposed SA-GC layer, which will be detailed in Section 3.2.

The SA-GC layer The key component of our framework is a newly defined
self-attention based graph convolutional layers (SA-GC layers), as illustrated
in Fig. 2. Specifically, we denote the input of the SA-GC layers as a feature
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vector H ∈ RT×N . Through a self attention layer [33], the output are a new
representation Hin ∈ RT×N×1 and a learned masked attention score matrix
Smask ∈ RT×T . This self attention layer is followed by 5 GC layers. Each GC
layer takes last layer’s hidden state vector and masked adjacency matrix Ãs

as the input. The hidden states, which are outputs of the 5 GC layers, are
defined respectively as H(1) ∈ RT×N×32, H(2) ∈ RT×N×64, H(3) ∈ RT×N×64,
H(4) ∈ RT×N×128 and H(5) ∈ RT×N×128. Furthermore, the ResNet mechanism
[15] is applied on each two SA-GC layers, i.e., we add the output of the first
SA-GC layer to the third SA-GC layer, and the output of the third SA-GC layer
to the final output. Detailed operations of the SA-GC layer are described in
Section 3.2.

Dual discriminator The video-based discriminator DV takes a sequence of
actions and the corresponding labels as the input. The frame-based discriminator
DF randomly selects kframe frames of an input sequence and the corresponding
labels as the input. Both discriminators output either real or fake. In this paper,
we apply the conditional GAN objective formulation [11, 25, 22]:

L = min
G

max
DF ,DV

Ex∼p(x)[logDF (x|y))] + Ez∼p(z)[log(1−DF (G(z|y)))]+

Ex∼p(x)[logDV (x|y)] + Ez∼p(z)[log(1−DV (G(z|y))))]
(1)

where p(x) defines the ground truth distribution, p(z) is the standard Gaussian
distribution and y is the one-hot class indicator.

3.2 Action Graph Construction

In this section, we describe detailed construction of the action graph, which is
used in our SA-GCN module. Note a skeleton sequence is usually represented

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 49

Top 5

17 20 24 30 31 49

Fig. 4: The pipeline of SA-GC layer. The top line shows frames out of every three
consecutive frames from Human 3.6 Direction class. The heat map under these samples
represent the corresponding attention scores for the 49th frame. The bottom line shows
the top 5 frames with the highest attention scores. Green circles and orange circles show
similarity between selected frames and our target frame (the 49th frame).
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Fig. 5: Information passing through SA-GC layers at the node “neck”.

by 2D or 3D coordinates of human joints in each frame. The inter-frame ac-
tion is the static skeleton in spatial space, and the inter-frame action is the
movement in temporal space. To capture the temporal correlation, previous
work has applied 1D convolution for learning skeleton representing by con-
catenating coordinate vectors of all joints in one frame. In our framework, as
stated before, we propose to construct a connected graph for a whole action
sequence, and learn a sparse inter-frame connection by adopting self-attention
learning. Particularly, we construct an undirected graph G=(V, E) on a whole
action sequence of T frames, each consists of N joints. Here, the node set
V = {vti|t = 0, . . . , T − 1, i = 1, . . . N} includes all joints of a skeleton sequence.

Explanation of the SA-GC layer Fig. 2 shows the detailed implementation
of the SA-GC layer. Our SA-GC layer consists of one self attention layer and
5 graph convolution (GC) layers. To explain the construction, we detail the
pipeline of the construction with an example illustrated in Fig. 4.

The Self attention layer Similar to standard self attention [33], our self-attention
layer takes a feature vector H ∈ RT×N as input, and outputs a self-attention
matrix Smask, representing how much influence of the past frames on the current
frame. Fig. 4 shows one of our generated Direction sequences and its correspond-
ing attention score vector’s heat map for the last frame (the 49th frame). After
the self attention layer, we select top 5 past frames with the highest attention
scores (only keep 6 elements in each row of the Smask matrix). As we could see
from the example in Fig. 4, the selected 5 past frames have the highest similarity
with the 49th frame. The skeleton in the 49th frame keeps the red arm up and
keeps the blue arm bent down. Looking back to past frames, frames before the
21st lift up its red arm. Frames between the 24th to the 31st frame have the
similar blue arm pose as the 49th frame. Our attention identifies frames 17th,
20th, 24th, 30th and 31st as the most relevant frames to be attended according
to the learned attention matrix Smask.

The GC layers As illustrated, the self-attention layer is followed by 5 GC layers.
After selection, we will connect each node of the 49th frame with the correspond-
ing node in the selected 5 frames and assign edge weights with the corresponding
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self-attention scores. Fig. 5 shows information passing path through our SA-GC
layer at the node neck. The left plot of Fig. 5 shows that after one GC layer, the
49th neck node can gather information from neck nodes of five selected frames
and four neighbor nodes in its own frame. The right plot of Fig. 5 shows that
after the two SA-GC layers, the 49th neck node can gather information for the
five nodes of the selected past four frames and seven nodes of its own frame. It
is worth noting that nodes in different frame will have distinct attention score
for edges in both spatial space and temporal space, thus they will have their
particular edge weights through our SA-GC layer.

Implementing self-attention based GCN In our case, we consider all joints
in an action sequence, ending up with a 2D adjacent matrix with both row size
and column size N∗T . To this end, we first use A ∈ RN×N to denote the adjacent
matrix of intra-frame, which is constructed by strictly following the structure of
a skeleton, e.g., the “head” node is connected to the “neck” node. After adding
self connections I, the intra-frame adjacency matrix will be Ā = A+ I. We then
define an initial adjacency matrix of a whole sequence as:

Ã =


Ā I · · · I
I Ā · · · I
...

...
...

I I · · · Ā


(N∗T )×(N∗T )

, (2)

where I is used to represent connecting each node with all of the corresponding
nodes in the temporal space, (N ∗T )×(N ∗T ) means Ã is a 2D matrix with both
row size and column size N ∗ T , both N and T are numbers, * means multiply
operation. The adjacency matrix Ã essentially means each node in one frame is
connected to the corresponding node in the temporal space. At the same time,
it also connects to the neighboring nodes in spatial space encoded by Ā.

Next, we propose to use self-attention to prune the action graph. The idea
is to learn a set of attention scores encoding the relevance of each frame w.r.t.
the current frame, and only choose the top-K frames in the temporal space.
Specifically, we adopt a similar implementation of the scaled dot-product at-
tention as in [33]. The input of the self-attention layer is represented as H ,
{h0, h1, · · · , hT−1}, where ht ∈ RN represents the hidden state vector at time t
with N nodes. Following the self-attention in [33], Q, K and V are given as:

Q = WqH , K = WkH , V = WvH , (3)

where Wq, Wk and Wv are projection weights. The attention score S ∈ RT×T

and the attention layer’s output Hin are calculated as:

S = softmax
(
QKT

)
; Hin = SV (4)
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In the task of action generation, we need to modify S as a masked attention
Smask which prevents current frame from attending to subsequent frames

Smask =


s0,0 0 · · · 0
s1,0 s1,1 · · · 0

...
...

...
sT−1,0 sT−1,1 · · · sT−1,T−1


T×T

, (5)

where the element sm,n denotes the n-th frame’s influence on the m-th frame and
values in the upper triangle are all equal to 0. To enforce the pruning, we further
select the top K scores in each row of the Smask and set the other elements to be
0. Note that, if the number of non-zero elements in some rows is less than K, we
will keep all the non-zero elements. Finally, the adjacent matrix is constructed
as

Ãs = Smask � Ã ,


s0,0 ∗ Ā 0 · · · 0
s1,0 ∗ I s1,1 ∗ Ā · · · 0

...
...

...
sT−1,0 ∗ I sT−1,1 ∗ I · · · sT−1,T−1 ∗ Ā


(N∗T )×(N∗T )

(6)

Consequently, the output (before activation) of the self-attention based graph
convolutional layer becomes:

H(1) = D−1ÃsHinW , (7)

where Dii =
∑

j Ãij
s represents diagonal node degree matrix for normalizing Ãs,

H(1) is the hidden state after first GC layer in Fig. 2. We will conduct graph
convolution operation in equation 7 using same Ãs for five times. The output of
the fifth GC layer in SA-GC layer is H(5). After a linear layer, we get the output
of the generator, which is a generated sequence x ∈ RT×N .

4 Experiments

We perform experiments to evaluate the proposed method on two standard
skeleton-based human-action benchmarks, the Human-3.6m dataset [16] and the
NTU RGB+D dataset [29]. Several state-of-the-art methods are used for com-
parison, including [42, 13, 7, 40]. Following [40], the Maximum Mean Discrepancy
(MMD) [12] is adopted to measure the quality of generated actions. Further, we
pre-train a classifier on training set to test the recognition accuracy of generated
actions. We also conduct human evaluation on the Amazon Mechanical Turk
(AMT) to access the perceptual quality of generated sequences. To examine the
functionality of each component of the proposed model, we also perform detailed
ablation studies on the Human-3.6m dataset.
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4.1 Datasets

Human-3.6m Following the same pre-processing procedure in [7, 40], 50 Hz video
frames are down-sampled to 16 Hz to obtain representative and larger variation
2D human motions. The joint information consists of 2-D locations of 15 major
body joints. Ten distinctive classes of actions are used in the following exper-
iments, including sitting, sitting down, discussion, walking, greeting, direction,
phoning, eating, smoking and posing.

NTU RGB+D This dataset contains 56,000 video clips on 60 classes performed
by 40 subjects and recorded with 3 different camera views. Compared with
Human-3.6m, it can provide more samples in each class and much more intra-
class variations. We select ten classes of motions and obtain their 2-D coordinates
of 25 body joints following the same setting in [40], including drinking water,
jump up, make phone call, hand waving, standing up, wear jacket, sitting down,
throw, cross hand in front and kicking something. We then apply two commonly
used benchmarks for a further evaluation in the ten classes: (i)cross-view : the
training set contains actions captured by two cameras and remaining data are left
for testing. (ii)cross-subject : action clips performed by 20 subjects are randomly
picked for training and another 20 subjects are reserved for testing.

4.2 Training Details

Following [40], we set the action sequence length for both datasets to be 50. The
image discriminator randomly selects 20 frames from every generated sequence
and training sequences as the input. The SA-GC layer selects top 5 past frames
to construct an adjacency matrix Ãs. We set batch size for training to be 100,
for testing to be 1000, and the learning rate to be 0.0002.

4.3 Evaluation Metrics

Maximum Mean Discrepancy The MMD metric is based on a two-sample test
to measure the similarity between two distributions P(x) and Q(y), based on
samples x ∼ P(x) and y ∼ Q(y). It is widely used to measure the quality
of generated samples compared with real data in deep generative model [49]
and Bayesian sampling [14]. The metric has also been applied to evaluate the
similarity between generated actions and the ground truth in [34, 40], which has
been proved consistent with human evaluation. As motion dynamics are in the
form of sequential data points, we denote MMDavg as the average MMD over
each frame and MMDseq to denote the MMD over whole sequences.

Recognition Accuracy Apart from using MMD to evaluate the model perfor-
mance, we also pre-train a recognition network on the training data to compute
the classification accuracy of generated samples. The recognition network exactly
follows the video discriminator except for the last softmax layer. This evaluation
metrics can examine whether the conditional generated samples are actually re-
siding in the same manifold as the ground truth and can be correctly recognized.
Details are given in the Appendix.
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4.4 Baselines

We compare our method with six baselines. We first consider the model in [42],
which can be used to generate long-term skeleton-based actions in an end-to-
end manner. This includes three training alternatives: end-to-end (E2E), E2E
prediction with visual analogy network (EPVA) and EPVA with adversarial loss
(adv-EPVA). The second baseline [13] is based on VAE, called the SkeletonVAE,
which improves previous motion generation methods significantly. Finally, two
most recent strong baselines are considered, including the previous state-of-the-
art method [7] and an improved version [40] with an auxiliary classifier. The
latter utilizes a Single Pose Training stage and a Pose Sequence Generation stage
to produce high-quality motions. These two baselines are respectively referred
to as SkeletonGAN and c-SkeletonGAN.

4.5 Detailed Results

Quantitative results Our SA-GCN model shows superior quantitative results
in terms of both MMD and recognition accuracies on the two datasets, compared
with related baseline models.

Human-3.6m Table 1 shows MMD results of our model and the baselines on
Human-3.6m. With structure information considered, our model achieves sig-
nificant performance gains over all baselines, which even without the need of
an inefficient pre-training stage. The recognition accuracies are reported in Ta-
ble 2. Similarly, our model consistently outperforms three baselines by a large
margin. Please note none information of the generated actions are used in the
pretrained classifier, thus we avocate that the relatively low recognition accura-
cies are indeed reasonable. On the other hand, this also indicates that existing
action generation models are still far from satisfactory.

NTU RGB+D This dataset is more challenging, which contains more body
joints and action variations. In the experiments, we find that three models (E2E,
EPVA, adv-EPVA [42]) fail to generate any interpretable action sequences. As
a result, we only present MMD results for the other three baselines in Table 3.
Again, the proposed method performs the best among all models under cross-
view and cross-subject settings.

Sitting Down

Phoning

Fig. 6: Randomly selected samples on NTU RGB+D dataset. Top: sitting down from
cross-subject, Bottom: phoning from cross-view.
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Table 1: Model comparisons in terms of MMD on Human-3.6m.

Models Pretrain MMDavg ↓ MMDseq ↓

E2E [42] No 0.991 0.805
EPVA [42] No 0.996 0.806

adv-EPVA [42] No 0.977 0.792
SkeletonVAE [13] No 0.452 0.467
SkeletonGAN [7] Yes 0.419 0.436

c-SkeletonGAN [40] Yes 0.195 0.218

Ours No 0.146 0.134

Table 2: Action recognition accuracy on the generated actions on the Human-3.6m.

Models Direct Discuss Eat Greet Phone Pose Sit SitD Smoke Walk Average

SkeletonVAE 0.37 0.01 0.51 0.47 0.10 0.03 0.17 0.33 0.01 0.01 0.201
SkeletonGAN 0.35 0.29 0.72 0.66 0.46 0.09 0.32 0.71 0.14 0.02 0.376
c-SkeletonGAN 0.34 0.44 0.57 0.56 0.52 0.25 0.67 1.00 0.50 0.03 0.488

SA-GCN 0.42 0.40 0.78 0.55 0.72 0.61 0.95 0.79 0.52 0.18 0.593

Table 3: Model comparisons in terms of MMD on NTU RGB+D.

Models
cross-view cross-subject

MMDavg ↓ MMDseq ↓ MMDavg ↓ MMDseq ↓

SkeletonVAE [13] 1.079 1.205 0.992 1.136
SkeletonGAN [7] 0.999 1.311 0.698 0.788

c-SkeletonGAN [40] 0.371 0.398 0.338 0.402

SA-GCN 0.316 0.335 0.285 0.299

Qualitative results We present some generated actions in Human-3.6m dataset
and NTU RGB+D dateset in Fig. 7(first and third row) and Fig. 6 respectively.
It is easy to see that our model can generate very realistic and easily recognizable
actions. We also plot action trajectories on a projected space by t-SNE [23] for
each generated action class on the Human-3.6m dataset in Fig. 9. It is observed
that a group of actions, i.e., directions, discussion, greeting, are close to each
other, and so is the group sitting, sitting down, eating ; while actions smoking
and sitting down are far away. These are consistent with what we have observed
in the ground truth.

Smooth action generation Humans are capable of switching two actions very
smoothly and naturally. For instance, a person can show others directions and
walking at the same time. In this part, we verify that our model is expressive
enough to perform such transitions as humans do. We use (8) to produce a
smooth action transition between action classes y1 and y2 with a smoothing
parameter λ ∈ [0, 1]. We generate 100 video clips with every mix and apply
t-SNE [23] to project the averaged sequences to a 1D manifold. The histogram
of various mixed actions is shown in Fig. 8. As we decrease λ, the mode (action)
gradually moves from directions towards walking, meaning that our model can
produce very smooth transitions when interpolating between the two actions.
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Directions

Walking

Mix, 𝜆 = 0.5

Fig. 7: Generated sequences of directions, walking and a mixed action with λ = 0.5.

Fig. 8: Histogram of mixed actions
where each mode represents an ac-
tion with a smoothing term λ.

Fig. 9: Action trajectories on
Human-3.6m.

Fig. 7 illustrates as randomly selected samples.

ymix = λy1 + (1− λ)y2; xmix = G(z; ymix), z ∼ N (0, 1) (8)

4.6 Ablation Study

Our key innovation in our model is the SA-GC layer. As a result, we conduct de-
tailed experiments to verify the effectiveness and usefulness of our self-attention
based graph convolutional layer on Human 3.6m dataset. Since the self-attention
layer has already been proved to be effective for sequential data, we keep the
self-attention layer for all the following baselines. Without special mentioning,
we keep all the other parts of the model to be the same.

Baseline 1: replace GCN layers with CNN layers We replace 5 GCN layers with
5 CNN layers using the same hidden dimension and kernel size.

Baseline 2: without the inter-frame A matrix Based on our model, we drop the
attention connections to past frames. That setting is the same as setting our top
k to be 0 in our SA-GC layer. Under this Baseline, each frame in the sequence
will be an independent graph for graph convolutional layer.

Baseline 3: replace self-attention based GCN layers with the ST-GC layers [44]
The ST-GC layer leverage graph convolution for skeleton-based action recog-
nition. Each ST-GC layer combines one graph convolution layer for learning
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intra-frame skeleton and one 1D convolutional layer for feature aggregation in
the temporal space.

The Fully Connected model described in Fig. 1 is not applicable and can
not scale to long sequences because it demands excessive amount of memory
and computational resources. The results of above three baselines are shown
in Table 4. Comparing with baseline2 and baseline3, we can see that adding
the adjacency matrix makes the model harder to train compared with CNN.
However, our proposed self-attention can mitigate the difficulties and surpass
standard CNN method on the skeleton based action generation task with much
lower MMD scores.

Table 4: Ablation study results.

Baselines MMDavg ↓ MMDseq ↓

Baseline 1 0.240 0.222
Baseline 2 0.915 0.922
Baseline 3 0.580 0.595

Ours 0.152 0.142

Table 5: AMT Evaluations

Models Evaluation Score↑

SkeletonVAE 2.401
SkeletonGAN 2.731
c-SkeletonGAN 3.157

SA-GCN 3.925

4.7 Human Evaluation

We finally conduct perceptual human evaluations in the AMT platform. Four
models are trained on the Human-3.6m dataset, including SkeletonVAE, Skeleton-
GAN, c-SkeletonGAN and our SA-GCN. We then sample 100 action clips for
each of the 10 action classes; 140 workers were asked to evaluate the quality of
the generated sequences and score them in a range from 1 to 5. A higher score
indicates a more realistic action clip. We only inform them of the action class
and one real action clip to ensure proper judgements. The design detail is given
in the Appendix. Table 5 demonstrates that our model is significantly better
than other baselines in human evaluation.

5 Conclusions

In this paper, we have presented the self-attention graph convolutional network
(SA-GCN) to efficiently encode structure information into skeleton-based human
action generation. Self-attention can capture long-range dependencies in contin-
uous action sequences and learn to prune the dense action graph for efficient
training. Further, the graph convolution is applied to seamlessly encode both
spatial joints information and temporal dynamics information into the model.
Based on these ideas, our model directly transforms noises to high-quality ac-
tion sequences and can be trained end-to-end. On two standard human action
datasets, we observe a significant improvement of generation quality in terms of
both quantitative and qualitative evaluations.
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A Experiments Results

We further show some action samples on both the Human-3.6m dataset [16]
and the NTU RGB+D dataset [29]. We sample one frame in terms of every two
consecutive frames to show the whole sequence of actions.

Human-3.6m We show ten classes of action sequences: direction, discussion,
eating, greeting, phoning, posing, sitting, sitting down, smoking and walking in
Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18 and
Fig. 19 on Human-3.6m dataset. For each action class, we present three generated
action sequences from random initialization.

NTU RGB+D We show ten classes of action sequences: drinking water, jumping
up, kicking something, making phone call, sitting down, standing up, throwing,
hand waving, wearing jacket and crossing hand in front in Fig. 20, Fig. 21,
Fig. 22, Fig. 23, Fig. 24, Fig. 25, Fig. 26, Fig. 27, Fig. 28 and Fig. 29 on NTU
RGB+D dataset. For each action class, we present two generated action se-
quences (the top two lines) for cross-view and two generated action sequences
(the bottom two lines) for cross-subject from random initialization.

Fig. 10: direction: this character is directing traffic.

Fig. 11: discussion: this character is discussing issues with others.
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Fig. 12: eating : this character is sitting on the chair and having its lunch.

Fig. 13: greeting : this character is waving hands and greeting with other people.

Fig. 14: phoning : this character is making a phone call with other people.

Fig. 15: posing : this character is making some exaggerated poses to take photos.

Fig. 16: sitting : this character is sitting down on a chair.
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Fig. 17: sitting down: this character is sitting down on the ground.

Fig. 18: smoking : this character is holding a cigarette in one hand and occasion-
ally smokes.

Fig. 19: walking : this character is walking.

Fig. 20: drinking water : this character is holding a water bottle in one hand while
drinking water.
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Fig. 21: jumping up: this character is jumping.

Fig. 22: kicking something : this character is kicking something.

Fig. 23: making phone call : this character is raising his mobile phone with one
hand and is making a phone call.
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Fig. 24: sitting down: this character is sitting down.

Fig. 25: standing up: this character is standing up.

Fig. 26: throwing : this character is throwing a ball.
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Fig. 27: hand waving : this character is waving hands.

Fig. 28: wearing jacket : this character is wearing jacket with its two arms.

Fig. 29: crossing hand in front : the final position for this action is making this
character’s arm crossing in front.


